The development of delivery vehicles that would carry therapeutic agents selectively to cancer cells has become an important focus in biomedical research. Nanoparticles have received much attention because the advances made in this field have resulted in multiple biocompatible materials. In particular, mesoporous silica nanoparticles (MSNs) offer a...
Pax3, a key myogenic regulator, is transiently expressed during activation of adult muscle stem cells, or satellite cells (SCs), and is also expressed in a subset of quiescent SCs (QSCs), but only in specific muscles. The mechanisms regulating these variations in expression are not well understood. Here we show that Pax3 levels are regulated by miR...
Among the key properties that distinguish adult mammalian stem cells from their more differentiated progeny is the ability of stem cells to remain in a quiescent state for prolonged periods of time 1,2 . However, the molecular pathways for the maintenance of stem cell quiescence remain elusive. Using adult muscle stem cells (" satellite cells " (SC...
Gene therapy is a promising approach for the treatment of a variety of disorders including genetic diseases and cancer. Among the viral vectors used in gene therapy, the lentiviral vector, based on HIV-1, is the only integrative vector able to transduce nondividing cells. The first generation of lentiviral vector was established in 1996. Since then...
Synthetic methodologies integrating hydrophobic drug delivery and biomolecular targeting with mesoporous silica nanoparticles are described. Transferrin and cyclic-RGD peptides are covalently attached to the nanoparticles utilizing different techniques and provide selectivity between primary and metastatic cancer cells. The increase in cellular upt...
Christophe PichavantAnnemieke Aartsma-RusPaula R ClemensKay E DaviesGeorge DicksonShin'ichi TakedaSteve D WiltonJon A WolffChristine I WooddellXiao Xiao
...
Duchenne muscular dystrophy (DMD) is a genetic disease affecting about one in every 3,500 boys. This X-linked pathology is due to the absence of dystrophin in muscle fibers. This lack of dystrophin leads to the progressive muscle degeneration that is often responsible for the death of the DMD patients during the third decade of their life. There ar...
The human immunodeficiency virus type 1 (HIV-1) Gag matrix (MA) domain facilitates Gag targeting and binding to the plasma membrane (PM) during virus assembly. Interaction with a PM phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], plays a key role in these MA functions. Previous studies showed that overexpression of polyphosphoino...
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx...
Christophe PichavantPierre ChapdelaineDaniel G CerriJean-Christophe DominiqueSimon P QuennevilleDaniel SkukJoe N KornegayJoão CS BizarioXiao XiaoJacques P Tremblay
...
Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin. Several previous studies demonstrated the feasibility of delivering microdystrophin complementary DNA (cDNA) into mouse and normal nonhuman primate muscles by ex vivo gene therapy. However, these animal models do not reproduce completely the human DMD phenotype, while ...
Mutations in Duchenne muscular dystrophy (DMD) are either inducing a nonsense codon or a frameshift. Meganucleases (MGNs) can be engineered to induce double-strand breaks (DSBs) at specific DNA sequences. These breaks are repaired by homologous recombination or by non-homologous end joining (NHEJ), which results in insertions or deletions (indels) ...